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Appendix: Basic statistics and data analysis

Sampling
A sample is a representative body of data. A large number of items (the total 
population) can be represented by a small sub-section (the sample) when it is 
impractical or impossible to measure the total population. Sampling is therefore an 
efficient use of time and resources which makes it possible to make statements about 
the total population while using a representative section. Sampling makes fieldwork 
investigations manageable.

There are different types of sampling which have their own strengths and weaknesses. 
In general, there are two main types of sampling – spatial sampling and temporal 
sampling. Spatial sampling refers to samples that vary in where they are taken from. 
Temporal sampling refers to samples that are taken over different time periods. Both 
can be used – for example, monitoring water quality changes above and below a 
sewage outlet between summer and winter.

Both temporal and spatial sampling can be sub-divided into three main sub-types: 
random, systematic and stratified (Figure 1). 

point

random systematic stratified

area

line

Before selecting one or more types of sampling, a number of questions should be 
considered.

●● What is the population being studied and in what area/time?
●● What is the minimum size of sampling needed to produce reliable information and 
results?

●● What is the most appropriate form of sampling for the enquiry?
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Random sampling
In a random sample, each item has an equal chance of being picked. Samples are 
often picked by using a random number table (Table 1). This is a table with no bias in 
the sequence of numbers. Once a number is chosen, it can be related to a map, a grid 
reference, an angular direction and distance. Although fair, the random sample may 
miss important parts of the survey area. It is also very time-consuming to do properly 
(page 135).

17 42 28 23 17 59 66 38 61 02 10 78

33 53 70 11 54 48 63 50 90 37 21 46

77 84 87 67 39 95 85 54 97 37 33 41

61 05 92 08 29 94 19 96 50 01 33 85

50 14 30 85 38 97 56 37 08 12 23 07

27 26 08 79 61 03 62 93 23 29 26 04

03 64 59 07 42 95 81 39 06 41 29 81

17 08 72 87 46 75 73 00 26 04 66 91

40 49 27 56 48 79 34 32 81 22 60 53

Systematic sampling
Systematic sampling is much quicker and easier than random sampling. Items are 
chosen at regular intervals (e.g. every 5 m, every tenth person, and so on). However, 
it is possible that a systematic sample will miss out important features. For example, 
in a survey of soil moisture and temperature in a ploughed field, if samples are taken 
on every ridge (or every furrow) and disregard other important microclimates, the 
results will be biased. The major problem with this type of sampling is that it can easily 
give a biased result because the sample is too small and, as a result, large areas are not 
included in the sample.

Stratified sampling
If it is known that there are important sub-groups in an area, for example different 
rock types which could influence soil types or farming types, it is possible to make a 
representative sample that takes into account all the sub-groups in the study area. It is 
also possible to weight the sample so that there is a proportionate number of samples 
related to the relative size of each sub-group. 

Sample size
Determining the appropriate size of a sample is a critical matter. It depends on the 
nature and aims of the investigation but also on the time available (and other practical 
considerations such as access, land ownership, safety and so on). There are statistical 
formulae that can be used to determine sample size for a survey. Such statistical tests 
often depend on confidence limits (i.e. the statistical limits of probability that tell you 
how significant your results are likely to be). These are shown opposite in Table 2. For 
example, suppose in a survey of vegetation in an area with a sample of 100 points, 90% 
of the points were seen to be occupied by deciduous woodland, the true figure (at the 
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95% confidence level) is 90% ± 6% (i.e. between 84% and 96%). The larger the sample 
size, the narrower the limits of the true population. 

Percentage calculated Sample size 25 Sample size 50 Sample size 100

98% or 2%  5.6   4.0  2.8

97% or 3%  6.8   4.9  3.4

96% or 4%  7.8   5.6  3.9

95% or 5%  8.7   6.2  4.4

94% or 6%  9.5   6.8  4.8

92% or 8% 10.8   7.7  5.4

90% or 10% 12.0   8.5  6.0

85% or 15% 14.3  10.1  7.1

80% or 20% 16.0  11.4  8.0

75% or 25% 17.3  12.3  8.7

70% or 30% 18.3  13.0  9.2

65% or 35% 19.1  13.5  9.5

60% or 40% 19.6  13.9  9.8

55% or 45% 19.8  14.1  9.9

50%  20.0 14.2

* For example, the proportion of deciduous woodland in a survey of vegetation types in an area.

Confidence limits are based on normal probability (Appendix page 8). This assumes 
that 50% of the values are above the average (mean) and 50% are below. It also assumes 
that most of the values are within one standard deviation (Appendix page 8) of the 
mean. Probability states that in a normal distribution:

●● 68% of samples lie within ± 1 standard deviation of the mean
●● 95% of samples lie within ± 2 standard deviations of the mean
●● 99.9% of samples lie within ± 3 standard deviations of the mean.

In other words, there is less than a 1 in 100 chance that the mean lies outside the 
sample mean ± 3 standard deviations, and less than a 1 in 20 chance that the true 
population mean lies outside the sample mean ± 2 standard deviations.

Descriptive statistics
There are many types of statistics, some of them extremely easy and some very 
complex. At the most basic, there are simple descriptive statistics. These include the 
mean or average, the maximum, minimum, range (maximum–minimum), the mode 
(most frequently occurring number, group or class) and the median (middle value 
when all the numbers are placed in ascending or descending rank order). 

There are also three different types of data. 

●● Nominal data refer to objects which have names, such as rock types, land-uses, dates 
of floods, famines, and so on. 

●● Ordinal or ranked data are placed in ascending or descending order, for example 
settlement hierarchies are often expressed in terms of ranks. Spearman’s rank 
correlation coefficient (Appendix pages 11–13) is used to compare two sets of ranked 
data such as infant mortality rate and purchasing power parity (Appendix pages 11–13). 
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●● Interval or ratio data refer to real numbers – interval data have no true zero (as in the 
case of temperature which can be in °C or °F) whereas ratio data possess a true zero 
(as in the case of rainfall).

Summarizing data
The mean or average is found by totalling () the values (x) for all observations and 
then dividing by the total number of observations (n), thus x is divided by n. In 
Table 3, the average carbon dioxide emission per country is   21 804.8

 _____ 20   = 1090.24

Country Million tonnes of carbon dioxide

USA   6044.0

China   5005.7

Russia   1523.6

India   1341.8

Japan   1256.8

Germany    808.0

Canada    638.8

UK    586.7

South Korea    465.2

Italy    449.5

Mexico    437.6

South Africa    436.6

Iran    433.2

Indonesia    377.9

France    373.4

Brazil    331.5

Spain    330.2

Ukraine    329.7

Australia    326.5

Saudi Arabia    308.1

Total (∑) 21 804.8

The mode refers to the group or class which occurs most often. In Table 3, every 
value occurs once, so there is no mode. If, however, there were two values of 436 (for 
instance), the mode would be 436.

The median is the middle value when all the data are placed in ascending or 
descending order. In Table 3, there are two middle values (the 10th and 11th values), 
so we take the average of these two. In this case, the values are 449.5 and 437.6, so the 
median value is 443.55, which is not actually a value in the data set.

Summarizing groups of data
In some cases, the data we collect are in the form of groups (e.g. daily rainfall, slope 
angles or ages). Such data may be recorded as 0–4, 5–9, 10–14, 15–19, etc.
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Table 4 shows daily rainfall in an area of rainforest. To make recording simpler, groups 
of 5 mm rainfall have been used. Finding an average or mean is slightly more difficult. 
We use the mid-point of the group, multiply it by the frequency and then proceed as 
before. So, from Table 4, n = 100 and x = 870. The mean is   870

 ___ 100   = 8.7.

Daily rainfall / mm Mid-point Frequency Mid point × frequency

0–4  2  20   40

5–9  7  42  294

10–14 12  24  288

15–19 17  12  204

20–24 22   2  44

Total 100 870

The modal group is the one which occurs with the most frequency (i.e. 5–9 mm). The 
median or middle value is the average of the 50th and 51st values when ranked: these 
are both in the 5–9 mm group.

Measures of dispersion
The range is the difference between the maximum (largest) and the minimum 
(smallest) value. Going back to Table 3, the maximum is 6044.0 and the minimum is 
308.1, hence the range is 6044.0 – 308.1 = 5735.9. An alternative measure is the inter-
quartile range (IQR). This is similar to the range but gives only the range of the middle 
half of the results – by this the extremes are omitted. The IQR is found by removing 
the top and bottom quartiles (quarters) and stating the range that remains. The top 
quartile is found by taking the 25% highest values and then finding the mid-point 
between the last of the top 25% and the next point. The lower quartile is found by 
taking the 25% lowest values and finding the mid-point between the first of these and 
the next highest value. The first quartile is termed Q1, and the third quartile Q3. 

Hence the IQR in the case of carbon dioxide emissions (Table 3) is from mid-way 
between the 5th and 6th values (i.e. half way between 1256.8 and 808 = 1032.4) to 
mid-way between the 15th and 16th values (i.e. half-way between 373.4 and 331.5 = 
352.45). The result is 1032.4 – 352.45 = 679.95 – a much smaller variation than when 
all values (including extremes) are included. 

Not every case is as easy! For example, there may be a number of observations not 
divisible by 4. In those situations, we have to make an informed guess at where the 
quartile would be. 

If we add the figure for Poland (307.0 million tonnes) to Table 3, we get 21 
observations. The quartiles are then at 5  1 _ 4   and 15  3 _ 4   (as each quarter is 5  1 _ 4   in size). 

The principle is the same as before. Find the values which represent 25% and 75% of 
the values. Then, find half the difference between the bottom of the top 25% and the 
next value below. Then find half the difference between the top of the lowest 25% and 
the next value above. 

The 25% value is now found a quarter of the way between 1256.8 and 808.0, while 
the 75% value lies three-quarters of the way between 331.5 and 330.2. Thus, the first 
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quartile is found by subtracting one-quarter of the difference of 1256.8 and 808.0 from 
1256.8.

1256.8 – 
(1256.8 – 808.0)

4
 = 1144.6

Q1 is mid-way between 1144.6 and 808.0: 976.3.

The 75% value is found by taking three-quarters of the difference of 331.5 and 330.2 
from 331.5.

331.5 – 3 
(331.5–330.2)

4
 = 330.525

Q3 is located midway between 330.52 and 331.5: 331.0125

Thus, the IQR is 976.3 – 331.0125 = 645.2875.

Suppose we now add the figure for the 22nd largest producer of carbon dioxide, 
Thailand (267.8 million tonnes), to the table. There are now 22 observations.

The 25% and 75% values now are found at 5  1 _ 2   and 16  1 _ 2   (as each quarter is 5  1 _ 2   in size, i.e. 
  22

 __ 4  ). Thus the 25% value is found half-way between the 5th and 6th figures, 1256.8 and 
808.0: 1032.4. The 75% value is found half-way between the 17th and 18th values, 
330.2 and 329.7: 329.95. Hence Q1 is found half-way between the 25% value and the 
next value below, midway between 1032.4 and 808.0, namely 920.2. Q3 is found half-
way between the 75% value and the next value above, the midpoint between 329.95 
and 330.2, namely 330.075.

Thus the IQR in this case is 920.2 – 330.075 = 590.125.

Standard deviation
Another way of showing grouping around a central value is by using the standard 
deviation. This is one of the most important descriptive statistics because: 

●● it takes into account all the values in a distribution
●● it is necessary for probability and for more complex statistics. 

Standard deviation measures the dispersal of figures around the mean, and is 
calculated by first measuring the mean and then comparing the difference of each 
value from the mean. 

Standard deviation is based on the ideas of probability. If a number of observations 
are made, then we would expect most to be quite close to the average, a few to be very 
much larger or smaller, and equal proportions above and below the mean. 

The formula for the standard deviation (s) is:

s = √ (x – 
_
x)2

n  

where x refers to each observation,  
_

 x  to the mean, n is the number of points, and  
(x –  

_
 x )2 tells us to subtract the mean from each observation, and then to square the 

result. 

Table 5 (opposite) shows the values worked out for  
_

 x , (x –  
_

 x ) and (x –  
_

 x )2.
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Standard deviation is found by putting the figures into the formula.

s = √46 724 131.81
20   = √2 336 206 = 1528 approx.

Thus the average deviation of all values around the mean (1090.24) is 1528. This gives 
a much more accurate figure than the range or IQR, as it takes into account all values 
and is not as affected by extreme values. Given normal probability, we would expect 
that about 68% of the observations fall within 1 standard deviation of the mean, about 
95% within 2 standard deviations of the mean, and about 99% within 3 standard 
deviations (Figure 2). Here we can see quite clearly that the rich countries are well 
above average (and some are over the mean plus two standard deviations, whereas the 
poorer countries are much more similar in income – they are all within one standard 
deviation of the mean).

Country Millions of tonnes  
of carbon dioxide, x

x
_

(x – x
_

) (x – x
_

)2

USA 6044.0 1090.24 4953.76 24 539 738.14

China 5005.7 1090.24 3915.46 15 330 827.01

Russia 1523.6 1090.24 432.76 1 87 281.2176

India 1341.8 1090.24 251.56 63 282.4336

Japan 1256.8 1090.24 166.56 27 742.2336

Germany 808.0 1090.24 –282.24 79 659.4176

Canada 638.8 1090.24 –451.44 203 798.0736

UK 586.7 1090.24 –507.54 257 596.8516

South Korea 465.2 1090.24 –625.04 390 675.0016

Italy 449.5 1090.24 –640.74 410 547.7476

Mexico 437.6 1090.24 –652.64 425 938.9696

South Africa 436.6 1090.24 –653.64 427 245.2496

Iran 433.2 1090.24 –657.04 431 701.5616

Indonesia 377.9 1090.24 –712.34 507 428.2756

France 373.4 1090.24 –716.84 513 859.5856

Brazil 331.5 1090.24 –758.74 575 686.3876

Spain 330.2 1090.24 –760.04 577 660.8016

Ukraine 329.7 1090.24 –760.54 578 421.0916

Australia 326.5 1090.24 –763.74 583 298.7876

Saudi Arabia 308.1 1090.24 –782.14 611 742.9790

∑ 46 724 131.81
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Inferential statistics
Inferential statistics use results from surveys to make estimates or predictions (i.e. 
they make an inference about the total population or about some future situation). 
To understand inferential statistics, it is important to grasp three related concepts: 
probability, sampling and significance.

Probability
One of the main tasks of inferential statistics is to establish the likelihood of a 
particular event or value occurring – this is known as probability. Probability is 
measured on a scale from 0 to 1. The value 1 represents absolute certainty (e.g. 
everyone will eventually die), whereas the value 0 represents absolute impossibility (a 
non-American citizen will become President of the USA). In statistics, probability (p) is 
often expressed as a percentage:

●● p = 0.05 (a 1-in-20 chance) is a 95% level of probability
●● p = 0.01 (a 1-in-100 chance) is a 99% level of probability
●● p = 0.001 ( a 1-in-1000 chance) is a 99.9% level of probability.

Sampling
See Appendix pages 1–2 for a discussion of sampling methods. The key aspect here is 
to decide how reliable our sample size is and how accurately it allows us to predict (i.e. 
what is the probability that our sample is truly representative?).

Significance
Significance relates to the probability that a hypothesis is true. In statistics, it is the 
convention to use a null hypothesis (a negative statement that we aim to disprove). 
A null hypothesis might state, for example, that there is no difference in the water 
quality above and below a sewage outlet. The alternative hypothesis (aka the research 
hypothesis) would state that there is a difference between the water quality above 
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 Figure 2 Standard deviations 
from the mean



and below a sewage outlet. The probability at which it is decided to reject the null 
hypothesis is known as the significance level. The significance level indicates the 
number of times that the observed differences could be caused by chance. The practice 
is to refer to results as ‘significant’, ‘highly significant’ and ‘very highly significant’, 
respectively at the 95%, 99% and 99.9% levels of significance (Figure 3). This means 
there is a 1-in-20, 1-in-100 and 1-in-1000 chance (probability) of the result occurring 
by chance.
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Sampling error or standard error
This statistic provides an estimate of the true population mean (i.e. the likely value we 
would get if we were able to measure all individuals in a population). It is based on 
two concepts – probability and normal distribution. In general, we would expect in a 
large population very few very large values and very few very small values. Most values 
would tend to group around the mean (Figure 4). So, any estimate that we make is 
likely to be somewhere near the true population mean. Our estimates are less likely to 

–3 –1–2 mean

(a)

(b)

(c)

+2 +3+1

(a)  68% of values are within 6 1 standard 
deviation of the mean

(b)  95% of values are within 6 2 standard 
deviation of the mean

(c)  99% of values are within 6 3 standard 
deviation of the mean
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be very much smaller or larger than the population mean. Thus, it is possible, within 
certain limits, to estimate where the true population mean lies. 

The following example illustrates the point. In a survey of vegetation characteristics 
on the Isle of Purbeck (UK), a sample of 100 observations found that 50% of the area 
was farmland, 14% heathland, 12% woodland and 24% other. From these figures, it is 
possible to state that the true population mean for woodland is somewhere around 
12%. The formula for sampling error or standard error is:

√P(100 – p)
n  

Where P refers to the proportion of (in this case) woodland

(100 – p) refers to the proportion that is not (in this case) woodland

n refers to the sample size. 

Thus, our estimate of the proportion of woodland that exists on the Isle of Purbeck is: 

12% ± √12 × 88
100   = 12% ± 3.2% = from 8.8% to 15.2%

We are stating that we know that our own survey may not be totally accurate and that 
the true population mean is likely to lie somewhere between these limits.

The larger the sample, the more accurate the estimate. In the above example, if the 
proportion of woodland were still 12% but the sample size was 1000, the standard 
error or sampling error would be:

12% ± √12 × 88
1000   = 12% ± 1.0%

Equally, given our results from our sample of 100 we can say that:

●● one standard error = 12% ± 3.2% = a range from 8.8% to 15.2%
●● two standard errors = 12% ± 6.4% = a range from 5.6% to 18.4% 
●● three standard errors = 12% ± 9.6% = a range from 2.4% to 21.6%

Confidence limits
Confidence limits are based on the ideas of probability and assume the data being 
sampled have a normal distribution. They are usually established at the 95% and 99% 
levels . These levels are found by multiplying the standard error by 1.96 and 2.56 (i.e. 2 
and 3 standard deviations above and below the mean – see Figure 4).

Going back to the survey on the Isle of Purbeck, the sample mean was 12% and the 
standard error was 3.2%. So, at the 95% confidence level, the actual confidence level for 
the woodland would be:

12% ± (3.2 ×1.96) = 12% ± 6.27 = 5.63–18.27%

At the 99% confidence level, the limits would be:

12% ± (3.2 × 2.56) = 12% ± 8.19 = 3.81–20.19%.

We could express this in a slightly different way and say that if the actual woodland 
mean were 12% , we would expect that:
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●● 95% of the surveys would record the mean as lying between 5.63% and 18.27%
●● 99% of surveys would record the mean as lying between 3.81% and 20.19%.

Spearman’s rank correlation coefficient (Rs)
Spearman’s rank correlation coefficient (Rs) is one of the most widely used statistics 
in social and environmental sciences. It is relatively quick and easy to do and only 
requires that data are available on the ordinal (ranked) scale. More complex data can 
be transformed into ranks very simply. It is called a rank correlation because only the 
ranks are correlated, not the actual values. The use of Rs allows us to decide whether or 
not there is a significant statistical correlation (relationship) between two sets of data. 
In some cases, it is clear whether a correlation exists or not. However, in most cases 
it is not so clear cut and to avoid subjective comments, we use Rs to bring in a certain 
amount of objectivity.

Purchasing power parity (PPP) and infant mortality rates (IMR)
Procedure

1 State null hypothesis (H0) – there is no relationship between IMR and PPP. The 
alternative hypothesis (H1) is that there is a relationship between IMR and PPP. 

 (Note that this example uses secondary data.)
2 Rank both sets of data from high to low (highest value is rank 1, second highest 

2, and so on) as in Table 6. In the case of joint or tied ranks, find the average rank 
(if two values occupy positions 2 and 3 they both take on rank 2.5. If three values 
occupy positions 4, 5 and 6, they all take rank 5).

3 Work out the correlation using the formula:

Rs = 1– 
6d2

n3 – n

where d refers to the difference between ranks and n the number of observations.

Country PPP / $ IMR / ‰ Rank / PPP Rank / IMR Difference Difference2

Afghanistan   800 151.9 10  1  9  81

Bangladesh  1 500  59.2  9  2  7  49

Brazil 10 100  22.5  4  6 –2   4

China  6 000  20.2  6  7 –1   1

India  2 800  30.1  7  5  2   4

Kenya  1 600  54.7  8  3  5  25

Mexico 14 200  18.4  3  8 –5  25

South Africa 10 000  44.4  5  4  1   1

UK 36 600   4.6  2  9 –7  49

USA 47 000   6.3  1 10 –9  81

320

Rs = 1– 
6d2

n3 – n
 = 1 – 

6 3 320
103 – 10

 = 1 – 
1920
990

 = 1 – 1.94 = –0.94

4 Compare the computed Rs with the critical values for a given level of significance 
(normally 95% in ecological studies) in the statistical tables (Table 7). If the 
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computed value exceeds the critical values in the table, we can say that we are 95% 
or 99% sure that there is a relationship between the sets of data. In other words, 
there is only a 5% or 1% chance that there is no relationship between the data.

n Significance level

95% 99%

4 1.00 –

5 0.90 1.00

6 0.83 0.94

7 0.71 0.89

8 0.64 0.83

9 0.60 0.78

10 0.56 0.75

12 0.51 0.71

14 0.46 0.65

16 0.43 0.60

18 0.40 0.56

20 0.38 0.53

22 0.36 0.51

24 0.34 0.49

26 0.33 0.47

28 0.32 0.45

30 0.31 0.42

It is convention to accept 95% and 99% levels of significance. From the table, for a 
sample of 10 (as in our example), these values are 0.56 for 95% significance and 0.75 
for 99% significance. In this example, our computed value is –0.94 (the minus sign can 
be ignored), so there is more than 99% chance that there is a relationship between the 
data. 

The fact that the correlation 
is negative shows that it is 
an inverse relationship (as 
one variable increases the 
other decreases). Thus as PPP 
increases, infant mortality 
rate decreases (Figure 5). 
The next stage would be to 
offer explanations for the 
relationship.

It is important to realize 
that Spearman’s rank has its 
weaknesses. It has a number 
of limitations which must be 
considered.
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●● It requires a sample size of at least seven.
●● It tests for linear relationships (Figure 6a and b) and would give an answer of zero for 
data such as river discharge and frequency, which follows a curvilinear pattern, with 
few very low or very high flows and a large number of medium flows (Figure 6c).

●● It is easy to make false correlations, as between summer temperatures in the UK and 
infant mortality rates in India. A significant relation is not necessarily a causal one. 

●● The question of scale is always important. As shown in Figure 6d, a survey of distance 
downstream and tubifex worms for the whole of a drainage system may give a strong 
correlation, whereas analysis of just a small section gives a much lower result. 

(a) (b)

(c) (d)

As always, statistics are tools to be used. They are only part of the analysis, and we 
must be aware of their limits.

There are other correlation coefficients – the Pearson product moment correlation 
coefficient is a more powerful correlation but it requires more sophisticated data. 
However, it is available on many computer packages. The principles are the same as 
for Spearman’s rank, but the data need to be interval or ratio (real numbers) rather 
than just ranked data. Again, the correlation tests for a linear relationship.

The Mann Whitney U Test
This is one of the most powerful distribution (non-parametric) free tests. Even when 
only medium sized samples (i.e. 10–20) are involved it has about 95% of the power 
of Student’s t-test. It can be used with ordinal (ranked) data, as long as both sets are 
ranked in a single sequence, or with data on an interval scale that have been allotted 
ranks in a single sequence. It is used to test whether the mean of two independent 
samples is statistically different (i.e. that the samples come from different populations). 
The samples do not have to be the same size – when the samples are of different sizes 
the smaller of the two is termed n1. It works best when one of the samples has at least 9 
readings – see significance tables. 
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Figure 6 Spearman’s rank 
graphs. 
(a)   Linear relationship,  

Rs = +1.0. 
(b)   Linear relationship,  

Rs = –1.0. 
(c)   Curvilinear relationship,  

Rs = 0.0. 
(d)   Mixed relationship,  

Rs = +1.0 for complete 
data set; Rs = 0.0 for 
subset.



Procedure
Water temperature upstream and downstream of a sewage outlet (winter):

Upstream 6, 6, 8, 7, 5, 4, 5

Downstream 9, 8, 10, 9, 8, 9, 10, 8, 9

1 The null hypothesis, H0, states that there is no difference in the means of the two 
samples. It assumes that the differences between them are the result of chance and 
are not significant.

2 The alternative hypothesis, H1, is that there is a significant difference between 
the two samples, in this case that water temperature below the sewage outlet is 
significantly higher than that above the outlet.

3 The critical level is 95%.
4 To apply the statistic, the values must be placed in rank order, but kept in their 

groups. (Conventionally, the smallest value is given rank 1. Where values tie, assign 
an average rank to each value.)

Upstream 4.5, 4.5, 8.5, 6, 2.5, 1, 2.5  (∑ = 28.5)

Downstream 12.5, 8.5, 15.5, 12.5, 8.5, 12.5, 15.5, 8.5, 12.5 (∑ = 106.5)

The Mann Whitney formula is:

U = n1n2 +
n1 (n1 + 1)

– R12

Or

U = n1n2 +
n2 (n2 + 1)

– R22

Where R1 = the sum of the ranks given to values in n1, and R2 = the sum of the ranks 
given to the values in n2.

Thus, 

U = n1n2 +
n1 (n1 + 1)

– R12

= 7 x 9 +
7 (7 + 1)

– 28.5
2

= 62.5

And 

U = n1n2 +
n2 (n2 + 1)

– R22

= 7 x 9 +
9 (9 + 1)

– 106.5
2

= 1.5

5 Referring to the statistical tables, the lower U value is used, in this case 1.5. In order 
for it to be significant, it must be lower than the critical values in the table. In the 
significance tables (Tables 8 and 9) the value for n1 and n2 is 16 at the 0.05 level, and 
10 at the 0.01 level. Hence, we are 99% certain that given the data above, there is a 
significant difference in the temperature above and below the sewage outlet.
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The nearest neighbour index (NNI)
Part of the study of ecosystems (and vegetation) is concerned with distributions in 
space and over time. The spatial distribution of vegetation in an area can be described 
by looking at a map. This may lead us to conclude that the some types of vegetation 
(or ecosystems) are scattered, dispersed or concentrated. However, the main 
weakness with the visual method is that it is subjective and individuals differ in their 
interpretation of the pattern. Some objective measure is required and this is provided 
by the NNI.
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Table 8 95% level of 
significance

Table 9 99% level of 
significance

n1=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
n2=3 0 1 1 2 3 3 4 5 5 6 6 7 8 8 9 10 10 11 12

4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19
5 1 2 3 5 6 7 9 10 12 13 14 16 17 19 20 21 23 24 26
6 1 3 4 6 8 9 11 13 15 17 18 20 22 24 26 27 29 31 33
7 1 3 5 7 9 12 14 16 18 20 22 25 27 29 31 34 36 38 40
8 2 4 6 9 11 14 16 19 21 24 27 29 32 34 37 40 42 45 48
9 2 5 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

10 2 5 8 12 15 18 21 25 28 32 35 38 42 45 49 52 56 59 63
11 2 6 9 13 17 20 24 28 32 35 39 43 47 51 55 58 62 66 70
12 3 6 10 14 18 22 27 31 35 39 43 48 52 56 61 65 69 73 78
13 3 7 11 16 20 25 29 34 38 43 48 52 57 62 66 71 76 81 85
14 4 8 12 17 22 27 32 37 42 47 52 57 62 67 72 78 83 88 93
15 4 8 13 19 24 29 34 40 45 51 56 62 67 73 78 84 89 95 101
16 4 9 15 20 26 31 37 43 49 55 61 66 72 78 84 90 96 102 108
17 4 10 16 21 27 34 40 46 52 58 65 71 78 84 90 97 103 110 116
18 5 10 17 23 29 36 42 49 56 62 69 76 83 89 96 103 110 117 124
19 5 11 18 24 31 38 45 52 59 66 73 81 88 95 102 110 117 124 131
20 5 12 19 26 33 40 48 55 63 70 78 85 93 101 108 116 124 131 139

N1=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
N2=3 0 0 0 0 0 1 1 2 2 2 3 3 3 4 4 5 5 5 6

4 0 0 0 1 2 2 3 4 4 5 6 6 7 8 9 9 10 10 11
5 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
6 0 0 2 3 4 5 7 8 9 10 12 13 14 16 17 19 20 21 23
7 0 1 2 4 5 7 8 10 12 13 15 17 18 20 22 24 25 27 29
8 0 1 3 5 7 8 10 12 14 16 18 21 23 25 27 29 31 33 35
9 0 2 4 6 8 10 12 15 17 19 22 24 27 29 32 34 37 39 41

10 0 2 4 7 9 12 14 17 20 23 25 28 31 34 37 39 42 45 48
11 0 2 5 8 10 13 16 19 23 26 29 32 35 38 42 45 48 51 54
12 0 3 6 9 12 15 18 22 25 29 32 36 39 43 47 50 54 57 61
13 1 3 6 10 13 17 21 24 28 32 36 40 44 48 52 56 60 64 68
14 1 3 7 11 14 18 23 27 31 35 39 44 48 52 57 61 66 70 74
15 1 4 8 12 16 20 25 29 34 38 43 48 52 57 62 67 71 76 81
16 1 4 8 13 17 22 27 32 37 42 47 52 57 62 67 72 77 83 87
17 1 5 9 14 19 24 29 34 39 45 50 56 61 67 72 78 83 89 94
18 1 5 10 15 20 25 31 37 42 48 54 60 66 71 77 83 89 95 101
19 2 5 10 16 21 27 33 39 45 51 57 64 70 76 83 89 95 102 108
20 2 6 11 17 23 29 35 41 48 54 61 68 74 81 88 94 101 108 115



There are three main types of pattern which can be distinguished: uniform or regular, 
clustered or aggregated, and random. These are shown in Figure 7. The points may 
represent individual trees, etc. If the pattern is regular, the distance between any one 
point and its nearest neighbour should be approximately the same as from any other 
point. If the pattern is clustered, then many points will be found a short distance from 
each other and there will be large areas of the map without any points. A random 
distribution normally has a mixture of some clustering and some regularity.

clustered randomregular

NNI is the technique most commonly used to analyse these patterns. It is a measure 
of the spatial distribution of points, and is derived from the average distance between 
each point and its nearest neighbour. This figure is then compared to computed values 
which state whether the pattern is regular (NNI = 2.15), clustered (NNI = 0) or random 
(NNI = 1.0). Thus, a value below 1.0 shows a tendency towards clustering, whereas a 
value of above 1.0 shows a tendency towards uniformity.

The formula for the NNI looks somewhat daunting at first, but, like most statistics, is 
extremely straightforward providing care is taken.

NNI or Rn = 2—D√N
A  

where  
__

 D  is the average distance between each point and its nearest neighbour and is 
calculated by finding    d __ N   (d refers to each individual distance), N the number of points 
under study and A the size of the area under study. It is important that you use the 
same units for distance and area (e.g. m or km but not a mixture).

For example, a survey of the distribution of vegetation types in the Camley Street 
Natural Park in London was undertaken to plot the distribution of deciduous trees and 
marsh species. The results are shown in Figure 8 and Tables 10 and 11. The area of the 
nature reserve is approximately 13 200 m2.
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 Figure 7 Nearest neighbour 
patterns
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Vegetation Nearest neighbour Distance / m

1 2 10

2 1, 3 10

3 2, 4, 5 10

4 3, 6 10

5 3, 6 10

6 4, 5 10

∑d 60

NNI or Rn = 2—D√N
A

—D = 
d
N

 = 
60
6

 = 10

Rn = 2 × 10 × (√ 6
3 200

 ) = 0.43

This answer suggests a significant degree of clustering (Figure 9). 

17

Figure 8 Distribution of 
vegetation in Camley Street 
Natural Park

Table 10 Nearest neighbour 
distances for marshland 
vegetation



Vegetation type Nearest neighbour Distance / m

 1 2  14

 2 3  10

 3 2  10

 4 6  20

 5 6  10

 6 5, 7  10

 7 6  10

 8 9  10

 9 8  10

10 9  20

11 7  22

12 14  30

13 14  30

14 13  30

∑d 236

NNI or Rn = 2—D√N
A

—D = 
d
N

 = 
236
14

 = 16.86

Rn = 2 × 16.86 × (√ 14
3 200 ) = 1.10

This answer suggests regular spacing (Figure 9). 
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 Table 11 Nearest neighbour 
distances for woodland 

vegetation

 Figure 9 NNI significance 
ranges



There are important points to bear in mind when using NNI.

●● Two or more sub-patterns (one clustered, one regular) may suggest a random result.
●● What is the definition of, for example, a tree? Do you include all individuals – or just 
those above a certain size?

●● Why do we take the nearest neighbour? Why not the third or fourth nearest?
●● The choice of the area, and the size of the area studied, can completely alter the result 
and make a clustered pattern appear regular and vice-versa.

●● Although the NNI may suggest a random pattern, if a controlling factor (e.g. soil type 
or altitude) is randomly distributed, the vegetation is in fact anything but randomly 
distributed.

Graphical techniques: charts 

Bar charts
Bar charts are one of the simplest ways of representing data (Figure 10). Each bar in a 
bar chart is of a standard width, but the length or height is proportional to the value 
being represented. There is a range of bar chart types. A simple bar chart shows a 
single factor. 

A multiple bar chart can be used to show changing frequency over time (e.g. monthly 
rainfall figures). A compound bar chart involves the subdivision of simple bars. For 
example, a bar might be proportional to sources of pollution and be subdivided on the 
basis of its composition. A combination of compound and multiple bar graphs may 
show how sources of pollution change over time.
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Figure 10 Bar charts 
showing percentage cover of 
vegetation in 3 years



Pie charts
Pie charts are sub-divided circles (Figure 11). They are used to show proportional 
variations in the composition of a feature (e.g. the proportion of sand, silt, and clay in 
a soil). 

land
66%

tropical forest
42%

deciduous
woodland

5%

boreal forest
9%

tropical grassland
10%

temperate grassland
4%

tundra
1%

temperate
forest
14%

other
15%

sea
34%

The following steps should be taken when making a pie chart:

1 Convert the data into percentages.
2 Convert the percentages into degrees by multiplying by 3.6 and rounding up or 

down to the nearest whole number.
3 Draw the appropriately located circles on a map or diagram.
4 Subdivide the circle into sectors using the figures obtained in step 2.
5 Differentiate the sectors by means of different shading.
6 Draw a key explaining the scheme of shading and/or colours.
7 Give the diagram a title.

Dispersion diagrams
A dispersion diagram is a very useful diagram for showing the 
range of a data set, the tendency to group or disperse, and for 
comparing two sets of data (Figure 12). It involves plotting the 
values of a single variable on a vertical axis. The horizontal 
axis shows the frequency. The resulting diagram shows the 
frequency distribution of a data set. They can also be used 
to determine the median value, modal value, and the inter-
quartile range.

Kite diagram
A kite diagram is a form of chart which allows you to view 
the relative distribution of different species along a transect 
(Figure 13). It is commonly used to show variations in sand 
dune succession, for example. Distribution is shown on 
the y-axis, species on the x-axis, and the abundance of each 
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 Figure 11 Pie charts showing 
global carbon fixing
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 Figure 12 Dispersion 
diagram showing lichen cover 

on east-facing and west-facing 
gravestones



species by the width of the columns. First, plot a series of bars representing the relative 
abundance of each species at each location. Then join the ends of the bars to form the 
kite shape.
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Figure 13 Kite diagram 
showing vegetation 
succession on Studland 
Beach, UK



Graphical techniques: graphs

Line graphs
Line graphs can be quite simple graphs which are used to show changes over time 
(e.g. temperature change related to the enhanced greenhouse effect) or over distance 
(e.g. variations in the populations of planktonic krill (Euphausiids), shrimps and crabs 
(decapods), ostracods, and fish in the North Atlantic (Figure 14).
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In all line graphs, there is an independent variable and a dependent variable. In 
this example, the line of latitude is the independent variable and each species is a 
dependent variable. The independent variable is plotted on the horizontal or x-axis 
while the dependent variable is plotted on the vertical or y-axis. Nearer the equator 
there is more energy, more plankton, and hence more developed food chains.

Multiple or compound line graphs can show changes in more than one variable, 
for example changes in energy use over time. Such diagrams can reveal interesting 
relationships between the variables. On such graphs, data can be plotted in a number 
of different forms – in absolute terms, relative terms, percentage terms, or cumulative 
terms.

Flow lines
Flow lines show the volume of transfer between different groups or places. A good 
example is energy flow in an ecosystem (Figure 15). Alternatively, migration rates 
and direction could be shown using flow lines. In many cases, absolute data are used 
(Figure 15) but it is possible to use relative data.

As with all graphical techniques, it is important to:

●● keep the background as simple as possible so as to avoid clutter
●● choose an appropriate scale, so that extreme values can be shown without any loss of 
clarity

●● provide a key, and give a title to the diagram.
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 Figure 14 Line graphs 
showing species richness and 

latitude



Triangular graphs
Triangular graphs are used to represent data that can be divided into three parts 
(e.g. soil consists of sand, silt, and clay; population consists of the young, adult, and 
elderly). These graphs require that the data have been converted into percentages, 
and that the percentages add up to 100%. On Figure 16, point A has 70% silt, 10% 
sand, and 20% clay. The main advantage of a triangular graph is that it allows a large 
amount of data to be shown on one diagram. In many cases, once the data have been 
plotted onto a triangular graph, groupings become evident. In the case of soil texture, 

Temperate deciduous woodland Mixed farming

biomass

input dissolved
in rain

legumes

fertilizers

harvesting crops,
livestock manure

input from rain
and irrigation

leaf fall,
tissue decay

(a) (b)

uptake by plants

weathering of rocks
weathering of rocks

run-off

run-off
mineralization,
humification,
and degradation

soil

litter

biomass

soil

litter

0

50

100

type of particle diameter (mm)

clay
silt
sand
gravel
coarse gravel

100

50clay / %

0

silt / %

silt / %clay / %

sandy
clay

clay

50 0100
sand / %

sand / %
100 020406080

100

0

20

40

60

80

0

100

80

60

40

20

<0.002
<0.02
<0.2
<2
>2

clay loam silty clay
loamsandy clay

loam

sandy clay

loamy sand

silty clay

silty loam
loam

silty

sand sand

23

Figure 15 Flow chart 
showing nutrient cycles for 
(a) a temperate deciduous 
woodland and (b) an area 
nearby where the woodland 
has been cleared for mixed 
farming.

Figure 16 Triangular graphs 
showing soil structure



there are established soil textural groups. Triangular graphs can be tricky to construct. 
However, with care they can provide a reliable way of classifying large amounts of data 
which have three components.

Semi-log and double log graphs
Semi-log and double log graphs can be daunting at first. They allow scientists to 
compare small-scale features with large-scale ones, and the relative growth over time. 
This would not be as easy on an ordinary line graph.

The logarithmic scale compresses the range of values. It gives more space to smaller 
values but compresses the space available for the larger values – look at the space 
available for large and small values on the line graph and semi-log graph in Figure 17. 
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In a semi-log graph (aka as log-normal), one scale is logarithmic – usually the vertical 
one – while the other is a normal linear scale – usually the horizontal one. In the 
logarithmic parts of the scale, each of the cycles is logarithmic. This means that each 
cycle on the scale increases by the power of 10. For example, in the first cycle, values 
may be 1, 2, 3, 4, etc., whereas in the second cycle they would be 10, 20, 30, 40, etc., and 
in the third cycle 100, 200, 300, 400, etc. and so on.

It is important to realize that the logarithmic axis does not begin at 0 but some factor 
of 1 (e.g. 0.1, 100, 100 etc.); the horizontal axis can begin at any number and could 
even be nominal data such as the names of the months of the year.
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 Figure 17 (a) Line graph and 
(b) semi-log graph showing 

numbers of survivors and 
lifespan


